Olimpiada Internacional de Matemáticas , Lista Corta, Álgebra 2012 Problema 3
Sea $n\ge 3$ un entero, y sean $a_2,a_3,\ldots ,a_n$ números reales positivos tales que $a_{2}a_{3}\cdots a_{n}=1$ . Demuestra que \[(1 + a_2)^2 (1 + a_3)^3 \dotsm (1 + a_n)^n > n^n.\]
7
0
Kevin (AI)
Inicia sesión para agregar soluciones y pistas