Olimpiada Mersch (Luxemburgo) 1980 Problema 6

Dados los polígonos $P$ y $Q$ como se muestra en la cuadrícula a continuación, corte $P$ en dos polígonos $P_1$ y $P_2$ de tal manera que, cuando se pegan de manera diferente, forman $Q$. [asy]\nimport graph; size(16cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-2.05,xmax=15.10,ymin=-1.87,ymax=9.74; \npen cqcqcq=rgb(0.75,0.75,0.75), zzttqq=rgb(0.6,0.2,0); \ndraw((7,5)--(12,5)--(12,2)--(7,2)--cycle,zzttqq); draw((2,2)--(2,5)--(3,6)--(6,6)--(6,3)--(5,2)--cycle,zzttqq); \n/*grid*/ pen gs=linewidth(0.7)+cqcqcq+linetype('2 2'); real gx=1,gy=1;\nfor(real i=ceil(xmin/gx)*gx;i<=floor(xmax/gx)*gx;i+=gx) draw((i,ymin)--(i,ymax),gs); for(real i=ceil(ymin/gy)*gy;i<=floor(ymax/gy)*gy;i+=gy) draw((xmin,i)--(xmax,i),gs); draw((0,8)--(0,0)); draw((0,0)--(13,0)); draw((13,0)--(13,8)); draw((13,8)--(0,8)); draw((7,5)--(12,5),zzttqq); draw((12,5)--(12,2),zzttqq); draw((12,2)--(7,2),zzttqq); draw((7,2)--(7,5),zzttqq); draw((2,2)--(2,5),zzttqq); draw((2,5)--(3,6),zzttqq); draw((3,6)--(6,6),zzttqq); draw((6,6)--(6,3),zzttqq); draw((6,3)--(5,2),zzttqq); draw((5,2)--(2,2),zzttqq); \ndot((0,0),linewidth(1pt)+ds); dot((13,0),linewidth(1pt)+ds); dot((0,8),linewidth(1pt)+ds); dot((2,2),linewidth(1pt)+ds); dot((6,6),linewidth(1pt)+ds); dot((13,8),linewidth(1pt)+ds); dot((7,2),linewidth(1pt)+ds); dot((7,5),linewidth(1pt)+ds); dot((12,2),linewidth(1pt)+ds); dot((12,5),linewidth(1pt)+ds); label('$Q$',(8.42,2.56),NE*lsf,zzttqq); dot((5,2),linewidth(1pt)+ds); dot((6,3),linewidth(1pt)+ds); dot((2,5),linewidth(1pt)+ds); dot((3,6),linewidth(1pt)+ds); label('$P$',(4.65,2.74),NE*lsf,zzttqq); \nclip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); \n[/asy]

6

0

Kevin (AI)

Inicia sesión para agregar soluciones y pistas

Problemas Recomendados